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1 Abstract

We present a practical approach for solving volume and surface mesh opti-
mization problems. Our approach is based on Newton’s method which uses
both first-order (gradient) and second-order (Hessian) derivatives of the non-
linear objective function. The volume and surface optimization algorithms are
modified such that surface constraints and mesh validity are satisfied. We also
propose a simple and efficient Hessian modification method when the Hessian
matrix is not positive definite. We demonstrate our approach by comparing
our method with a popular nonlinear conjugate gradient method in terms of
both efficiency and mesh quality.

2 Introduction

Mesh quality improvement and mesh untangling are important topics for par-
tial differential equation (PDE)-based simulations, because elements with a
poor quality can ruin accuracy and efficiency of the solution, and an inverted
(tangled) element can result in failure to obtain a PDE solution. Mesh quality
improvement and mesh untangling problems are often formulated as nonlin-
ear optimization problems [1, 4]. In order to efficiently solve such nonlinear
optimization problems, various nonlinear solvers have been developed. These
solvers include steepest descent, conjugate gradient, feasible Newton, quasi
Newton, and trust-region methods [2]. Previously, many researchers have used
nonlinear conjugate gradient method (NLCG) for solving mesh optimization
problems. However, it turns out that NLCG method is slow, prone to getting
stuck in local minima and failing to converge due to surface mesh constraints.
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In this paper, we employ Newton’s method for solving various nonlinear
mesh optimization problems. The use of Newton’s method for solving nonlin-
ear optimization problem is motivated by the observation that, if the nonlinear
functional is sufficiently smooth, the optimal points are roots of the derivative
function. Thus, a nonlinear optimization problem is transformed into a root
finding problem. We choose Newton’s method for solving the mesh optimiza-
tion problem, because it provides both search direction and a step size using
both first-order (gradient) and second-order (Hessian) information. In addi-
tion, its convergence is quadratic. We will demonstrate that Newton’s method
is successfully used to solve mesh optimization problems more accurately and
efficiently.

3 Mesh Optimization and Untangling using Newton’s
Method

3.1 Volume Mesh Optimization

Let F (x) be the nonlinear mesh optimization problem to minimize. Let qi be
the quality of ith vertex and N be the number of vertices on the mesh. Then,
F (x) is formulated as

∑N
i=1 qi. We use a condition number quality metric for

mesh quality improvement. For a trivalent mesh corners in 3D, given by edge
vectors e1, e2, and e3, the quality of the vertex corner is given by [3]:

qi =

√
||e1 × e2||2 + ||e2 × e3||2 + ||e3 × e1||2

√
||e1||2 + ||e2||2 + ||e3||2

(e1 × e2) · e3
. (1)

The condition number quality metric is scale-invariant and prefers a right
angle corner.

We minimize F (x) using Newton’s method by finding vertex coordi-
nates x such that 5F (x) is zero. We use finite difference approximations
to compute these gradient (OF (x)) and Hessian matrix (HF (x)) of F (x).
In the kth iteration, we compute a Newton update, pk , by solving, pk =
−(HF (xk))−15F (xk). The kth vertex position is updated as xk+1 ← xk+αpk,
where α is a constant. The α is determined by Armijo condition [2] dictating
that the update should lead to a sufficient decrease in the objective func-
tion. In practice, we start with α=1 and cut it by 20% until the Armijo
condition is satisfied. The Newton direction, pk, reliably produces a decrease
in function only if HF (xk) matrix is positive definite. When HF (xk) is not
positive definite, we perform a Hessian modification step such that all eigen-
values of HF (xk) are positive [2]. The Hessian modification step is performed
by adding diagonal terms, HF (xk) = HF (xk) + βI, until HF (xk) is positive
definite, where β is a positive constant and I is an identity matrix.

For initially tangled meshes, we employ Escobar. et.al’s [4] modification
to the quality metric, which is able to simultaneously untangle and smoothe.
The quality metric [4] is defined as
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qi =
(A)(L)

V +
√
V 2 + δ2

, (2)

where A =
√
||e1 × e2||2 + ||e2 × e3||2 + ||e3 × e2||2, L =

√∑3
j=1 ||ej ||2, V =

(e1 × e2) · e3, and δ is a constant value. If V is positive and δ is zero, the
quality metric is same as the condition number quality metric. Introducing δ
makes the objective function continuous across the zero volume. The choice
of δ for different problem sizes is not well-defined in [4]. The δ value should
be as small as possible (close to zero) in order to remain close to the original
condition number quality metric, but bigger values of δ make the function
less steep and ensure more robust gradient computations. In order to satisfy
these requirements, we developed an adaptive and smooth δ function which
satisfies above requirements using a sigmoid function.,

δ =
1

1 + ceV/V0
, (3)

where V0 is a reference element volume for scale invariance which could be
chosen as some average element volume around the element being untangled
and c is a constant value. We observed that the c value between 10 and 100
works well.

3.2 Surface Mesh Optimization

As described in [1], surface meshes are optimized by performing optimizations
with respect to parametric coordinates. We use a condition number quality
metric for mesh quality improvement. For surface meshes, the updated vertex
coordinates should satisfy both surface constraints and the mesh validity. If
the updated vertex coordinates are located beyond the parametric bound, we
change the parametric space to the neighborhood parametric space. The Hes-
sian modification step described in Section 3.1 is employed when the Hessian
matrix is not positive definite.

4 Numerical Experiments

We perform numerical experiments on both volume and surface meshes. For
volume meshes, we consider an initially tangled mesh. We compare Newton’s
method with a popular nonlinear conjugate gradient (NLCG) method in terms
of mesh quality and computational cost. Figure 1 shows the initial meshes that
we tested. For the cube mesh, the initial mesh is randomly perturbed such
that 60% of the elements are inverted.

Table 1 shows timing results in seconds until various meshes are optimized.
Our experimental results show that time to convergence for Newton’s method
is up to 4.8 times faster than for the NLCG method. Table 2 shows worst
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(a) Pig mesh (surface) (b) Slope mesh (surface)

(c) Igea mesh
(surface)

(d) Cube mesh
(volume)

Fig. 1. The element types of the four initial meshes are (a) Pig: mixed elements, (b)
Slope: polyhedral elements, (c) Igea: tetrahedral elements, and (d) Cube: hexahedral
elements. Here, elements shown in red indicate inverted elements.

element qualities for various surface and volume meshes. A smaller value indi-
cates a better mesh quality. For all these examples, Newton’s method outper-
forms the NLCG method. For a cube mesh, we also observe that two elements
fail to be valid and remain tangled after optimization when the NLCG is
used. However, Newton’s method is able to untangle all inverted elements.
Table 3 shows surface mesh quality statistics of pig meshes. We observe that
Newton’s method outperforms the NLCG method in terms of both average
element quality and worst element quality.

Mesh (Number of elements) Newton NLCG

Pig (surface, 3K) 61 226
Slope (surface, 3K) 504 1,810
Igea (surface, 40K) 297 1,422
Cube (volume, 3K) 77 335

Table 1. Time (sec) to optimize various meshes.
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Mesh (Number of elements) Initial Optimized (Newton) Optimized (NLCG)

Pig (surface, 3K) 45.07 6.89 11.34
Slope (surface, 3K) 48.30 1.75 2.06
Igea (surface, 40K) 19.08 3.68 3.91
Cube (volume, 3K) 1026.80 1.09 1.17

Table 2. Worst element quality computed by the condition number metric for
surface and volume meshes.

Surface Element Quality Initial Optimized (Newton) Optimized (NLCG)

1.0 - 1.5 2442 3727 3728
1.5 - 2.0 768 89 84
2.0 - 3.0 384 10 12
3.0 - 4.0 108 0 2
4.0 - 5.0 45 0 0
5.0 - 7.5 57 1 0
7.5 - 10.0 9 0 0
10.0 - 15.0 12 0 1
15.0 - 57 0 0

Table 3. Surface mesh quality statistics of pig meshes. We show the number of
mesh elements whose average quality metric falls into a given range, for the initial
mesh as well as the two optimized meshes (Newton and NLCG).
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